什么是二次函数,明白了超简单

什么是二次函数,明白了超简单

如图就是二次函数y=x²的图像,当x=1时,不论是通过解析式还是图像,都可以得到对应的y=1,同理,当x=2时,不论是通过解析式还是图像,都可以得到对应的y=4,等等。

现在明白了吧,解析式和图像是一回事,都是为了求对应的y的值。但图像更直观,通过这个图像,咱们可以很方便地观察出:当x>0时,x越大,y就越大;当x<0时,x越大,y越小;也能看出y的最小值等于0;等等。

总结:解析式和图像是一回事,都是为了表示变量x和y之间的关系的。

以上都是理论,理论是为实践服务的。作为学生,很大程度上是为做题服务的,因此,下面咱们讲讲如何根据上面这些内容做练习。

现在大家对二次函数已经有了一个整体的,基本的了解,这是本节课的一个目的,另一个目的是让大家能够根据二次函数的定义来解决实际问题,请继续往下看。

课本上,二次函数的定义是这样的:

一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。其中,x是自变量,a,b,c分别是二次项系数,一次项系数,常数项。

这个定义最大的作用是能够用来判断一个等式是否是二次函数,以及求参数的值。

例1:

符合形式“y=ax²+bx+c(a,b,c是常数,a≠0)”的就是二次函数,否则就不是二次函数。

对于(1):当a等于0时,不是二次函数,当a不等于0时,是二次函数,所以它不一定是二次函数。

对于(2):是二次函数。二次项系数为-1,常数项为1,没有一次项。

对于(3):不是二次函数。对(3)进行化简可得:y=-2x+1,没有二次项,故不是二次函数。

对于(4):不是二次函数。未知数x不能出现在分母位置。

对于(5):不是二次函数。最高次是4次,不是二次,故不是二次函数。

对于(6):不是二次函数。未知数头上不能带根号。

例2:

要使题中的等式是二次函数,必须满足两个条件:x的最高次为2次,且2次项系数不等于0。

孙老师微信公众号:高中数学爱做初中数学题返回搜狐,查看更多

相关数据